
/Ao—A078 060 MASSACIVSETTS INST OF TECH CAMO PIDGE ARTIFICIAL INTE—flC F/S 9/2CO$ UTER AIDED EVOLUTIONARY DESIGN FOR SOFTWA RE ENGINEERING. (U)
JAN 79 C RICH. H £ SHROBE. R C WA TERS NOOO 14—75—C ~ ofl 3

UNCLASSIFIED A I—M— 506 NI.
j
~~~ t 

-

~ 

_________
ala oeo ___________

I

- . a



— .- — —v-
~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ -- — 

J- - — - - —

_ _ _  —

UNCLASS IFIED
SECURITY CLASSIF ICATION OF THIS PAGE (m~.n Da

REPORT DnrIIuE~JTATInI.I DAr ~~ READ DISTRUCTIUIia
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

BEFORE cOMPLETING FORM
I. REPORT NUMBER 1. GOVT AC~~ESS~OH ~4O. S. REC1P1E1* rS CATALOG NUMBER

A l . Memo 506 ~

~~ ‘r 6...~~ ITLE (and Subtitle) 5. TYPE OF REP ~ E~IO.P COVERED

~ 
jcotnputer Aided Evolutionary Design for Soft~~]c~ m emorandum

C.~~ ‘\ I ware Engineering ~~ ,~~—~~~~~~~~~~~ - , .~~~---- -~~~~- — 
- -

I . PERFORMING ORG. REPORT NUMBER

~~~~~~~ ~~~~~~

—..
7. AUT HOR(.) L I4TRACT OR GRANT NU •)

-

¶~

g ~~~harlesJRich~ Howar~~ robe,1 Richard
5

?c~~~e;
9. PERFORMING ORGANIZATI ON NAME AND ADD RESS I Sflf~U !~~~~~~~~i~~ T~ TAS K

Art i f i c ia l Intelli gence Laboratory AREA 6 WORK UNIT NUMBERS

~~~ 545 Technology Square
Cambridge , Massachusetts 02139 ___________________________

I t .  CONTROLLING OFFICE NAME AND ADDRESS 5 .TJ
Advanced Research Projects Agency / Jan ._ 1
1400 Wilson Blvd ~~ :~~~ j J US E R O F PA~~~~
Arl ington , Virginia 22209 _________________________

14. MONITORING AGENCY NAME 6 AOORESS(II dUI.r.nt from Cont,ollh,á Off ice) IS. SECURITY CLASS. (of LAS. ,.port ~

Off ice of Naval Research UNCLASSIFIED
Information Systems ____________________________
Ar lington, Virgin ia 2221 7 IS.. 

~~~~~~ó
A

~
S
L

i l ICATION/DOWNGRA D
~
NG

16. DISTRIBUTION STATEMENT (of SAl. R.port)
— - ___________________________________

Distrj but r~r c~f Ih is desuma.n~ is -w~-1.imited.

~~~~~~~~~~~~~~~~~~~~~~ EMEN T (of the ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ dlfl.rontJ6rn J~u~ o?t)

IS. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on teyC,.. .Sd. if n.cb..arl aid Id tSty hybRck.ILWO,b.t)

Computer—aided design
Software engineering . NATIONA L TECHN ICAL
Systems development INF ORMATION SERVICE

U.S. DEPAUT M I NT Of CO MMERCE
SPRINGTIE~D. ~A. 22%61

20. ABSTRACT (Continu, on ,.v.r .. aid. SI n.c...mty aid ld.nSSIy by block numb.t)
We report on a paritally implemented interactive computer—aided design tool
for software engineeirng. A distinguishing characteristic of -our project
is its concern for the evolutionary character of software systems. -our
project draws a distinction between algorithms and systems, centering 4ts
attention on support for the system designer. Although verification has
played a large role in recent research, .eis~~perspective suggests that thea
complexity and evolutionary nature of software systems eq~ires #~~tu~)er/ f
additional techniques, which are d.~s~tJ..bed i~1t1~~ pap

DD , 
~~~~~~~ 

‘p473 EDITION OF I NOV 69 IS o•so.
S/N 0102- O I4~ 6601 I~ .. ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~.~~~._ _ - - — ~~ —~~~~~—-- — —.

_______ - ~~~ ~~~

DISCLAIME R NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY .

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED

FROM THE BEST COPY F U R N I S H E D US BY

T H E S P O N S O R I N G A G E N C Y . A L T H O U G H IT

IS RECOGNIZED T HAT CERTAIN PORTIONS

A R E I L L E G I B L E , IT IS B E I N G R E L E A S E D

IN THE INTEREST OF MAKING AVAILABLE

AS M U C H I N F O R M A T I O N AS P O S S I B L E .

- _F

~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

~~
--

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - . - -

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLEGENCE LABORATORY

A.I. Memo 506 January 1979

COMPUTER AIDED EVOLUTIONARY DESIGN

FOR SOFTWARE ENGINEERING

Charles Rich, Howard E. Shrobo , and Richard C. Waters

71, s nw a ~ ~~~ p (? c

ABSTRACT - We report~~n a partia ll y implemented interactiv e computer aided-design tool for(I1.,s
software eng ineering. A distinguishing characteristic of ‘-e~~ project is its concern for the
evolutionary character of software syster 1s. ~~~—p~o~ec+ draws a distincti on between algorithms
and ss s t e r ns , center ing its attent ion on support for the system designer. Although ver~fica t ion has
played a large role in rece nt research , -etir~ perspective suggests that the comp lexit y and
evolutionary nature of sottware sys tems requir9ta number of additional techniques, which are
described in this paper.

The ~ anaging of c or iplex ity is a fundamental issue in all engineering disciplines. ~~~ identif y
three major techni ques used in mature engineering fields which seem applicable to the
engineering of ~oftv iare systems: increm ental modelling; multi ple and almost hierachical

• decomposition; and analysis by inspection. Along these lines’
~
t
we1 have ~ Constructed a plan

librar y to aid in aiia ys is by inspection (the analysis of a program based on identifying standard
• algorith ms and methods in it);

~i1) Identified a sm all set of plan building rnetl~ods which can be
• used to decoi, pose a sot tw a re system int o loosely coupled subsystems;

~ Developed the
technique of feu~poral Abs traction which makes it possible to model a program fr~ rn a viewpoint
which c learl y separates the actions of generators and consumers of data . and ~~

) Developed a
• dependency-based reasoning system uniquely suite d to incremental and evolutionary program

analysis. These i- rcthocls arc substantiall y language independent and have been applied to
programs v iritten in several cornrro nl y used languages.

*This paper was adapteci from a proposal to the National Science Foundataion.

This report descril)os research conducted at the Artifi cial Intelligence Laboratory and at the
Laboratory f or Computer Science of the Massachusetts Institute of Technology. Support for the
Art i f ic i al Inte lligence Laboratory ’s Art i f ic ial Intelligence research is provided in part by the
Advanced Pe~ -arch Projects Agency of the Departme nt of Defense under Office of Naval Research
contract N00014-75-C-0C 43. Support for the Laboratory for Computer Science ’s research is
provided in part by the Advanced Research Projects Agency of the Department of Defense under
Office of Naval ~es ea rch con tract N00014-75-C—066 1.

— ~~~ ‘:: T~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~
_ _ _ _ _ _ _ • • •—-• - • • • • - - - ~~ - - • - • - - •• • - • •• -~~~~

Computer Aided Evoluti onary Design 1 Rich,Shrobe,Waters

(
• .

I. The Nature of The Problem

Large software systems are expensive to design and implement , and even more expensive to
maintain. The f ollowing anecdote is indicative of the kind of difficulties which are all too typical.
A major corntrerc ial f irm undertook the development of a large financial software system about
seven years ago. The project began with the careful development of a complete design which
was then implem :rited. This effort took four or five years , required six full time progra m m ers and
cost roughly five million dollars. During the course of the implementation effort , many of the
initial desi~ n fee ~ture~. were found to be unsatisfactory. Furthermore, the firm ’s business practices
and the applicable govcrnrrent regulations underwent nurricrous revisions as time went by. These
factors resulted in a series of m odificatio ns to the system which were documented poorly if at all.
Although the progra i at present is known to have certa in bugs, it has been very useful. In fact it
is so useful that the firm would like to modif y the pr ogra m for use in other departments and on
other computers. However , no one reall y knows how it works anymore. The current staff of the
project has no programmer who has been involved with the system for more than eleven months.
The only comp lete docuri~entation is the original design, now six years out of date. The firm is
faced with the prospect of redesi gning and recoding the entire system from the ground up.

The c’vo luticiiary nature of syste ms is a central feature in the current software crisis. The

• specifications change , the design changes , and, as hugs are disc overed, the implementation must
(be changed to fix thorn . One of the driving forces behind this is the desire for new features. This

is prompted by tw o main factors. First , it is not possible for the designers or the potential users
of a system to fore see A ll of the opportunities for the system’s use. Second, the environment in
which the system operate s is itself subject to change. New regulations , business practices and
technology appear and force modifications to the system.

A dominant problem iii the design of large softwar e systems is how to manage and limit the
apparent ori pl~~ity of the situation so that some reasonable solution can be produced. If all of
the relevant constraints were c onsidcrcd at once in order to try to arrive at a perfect solution in
the f i r s t pl ace , the details would overwhe lm human cognitive capacity. A more eff ective strategy
is to star t with a solution w hich is reasonably close to being correct , and then to modif y it

repeatedl y until a soluti on is reached which meets the actual needs. Thus there is both an
internal and an external cause for the evolutionary nature of software.

Aut omatic veri f icat ion attack s the problem of evolution by attempting to eliminate the need
f or change. If a progra m is verifi ed at the start , then bugs will not surface later and theref ore
the program will not have to be n,~odified in order to fix them. However, auto m at ic verification can
be at most onl~ part of the solution to the softw a re problem because it does not attack the
external sources of change such as changing government regulations. A second use for
veri f icat ion is in the cert i f ication of softwar e syster is. Such facilities are highly desirable but
they do not el i i i inate the need for other types of support during the process of developing code
good enough to w a rrant the effort of cert i f icat i on.

We suggest that what is needed in addition is a computer aided design tool which can help a
prograirirer d.~al with pro~ram evolution f rom the initial design phase right through the continuing

— —•- •••••-. ••-•—•-••- • - • .—•— •—- - •— — —~ •—• — • - - ‘— • - • _p ••••
__

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
________

Computer Aided Evolutionary Design 2 Rich,Shrobe,Waters

maintenance phase. We imagine a system (such as the Programmer ’s Apprentice [Hewitt & Smith
1975; Rich & Slirobe 1976 ,78; Wati~rs 197 6,78,79J) which can func tion as a “junior progra m m er ”

mi ght. Such a systerii does not need to be able to certify the correc tness of an entire software
system. Rather, it must provide the designers and coders with relevant information which helps

• them to better understand the consequences of modifications. The system would be relatively
knowle~,eable, but not an expert programmer itself. It would be able to understand, expla in, and
reason about programs in tcrrris fa m iliar to a programmer. Its main virtue would be its abilit y to
select from the vast annotation associated with a software system the small part which is relevant
to whatever task the program mer is currently conducting. We propose to develop the
fundamental princi ples behind such syste m s and to construct a prototype system which meets
many of these desiderata.

II. An Idealized Scenario

In order to indicate the kind of system we have in mind, this section presents an imag i n a r y

sceneri o showing an expert prograrilmer interacting wit l~ a Program m er ’s Apprentice during the
design and coding of a hashed associative retrieval system. Natural English dialog is used in the
example in order to make the presentation more comprehensible. However , natural language
understanding .~nd generation are beyond the scope of the work proposed here.

PROGRAMMER: I wan t to make a hashed associative retrieval system for tree-structured facts.
Every fact will he stored in each of the buckets hashed to by one of its leaf nodes. I am
going to start by coding the insert routine. Here is the code:

(DEFuN INSERT (FACT) (INSERT 1 FACT 1))

(DEFUN INSERT1 (FACT POSITION )

(COND ((ATOM FACT) (CUCKET-INSERT FACT (HASH FACT POSITION TABLESIZE)))

(T (INSERT1 (CAR FACT) (* POSITION 2))

(INSERT1 (CDR FACT) (+ (* POSITION 2) 1)))))

APPRENTICE: I do not understand this code completely. I see that you are doing a tree-traversal
over the fact terminated at atomic nodes, and that you are doing a BUCKET . I NSERT for each of
these teriu iii ial nodes. However, I do not understand what the coriiputation involving POSITION

is for , nor why HASH takes POSITION as an argument. The hashing algorithms I know about take
only two arguii ients: a key, and a table size , and compute an index srnialler than the size.

PROGPAMVER: In this system HASH takes two argurrents in addition to the size argument: an atom
fran-i the fac t and a number (POSITION) which uniquely identifies the position of the atom in the
tre ’e structure of the fact. Like a standard hash, it c omputes an index smaller than the size.
POSITIO N r akes it possible to distinguish between different occurcnccs of the sa m e atom in a
fac t .

APPRENTICE: I still do not completely understand how INSERT works. How is BUCKET-INSERT going

• - • •~~~~~~~—~~~ — • ~~.••-~~~ •~~~~~~~—~~• - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~



—r _ _ _ _ _ _ _ _ _ _  — -

- ~~~~~~~~~ ~~~~~~~~

‘ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~ 

• - - •
- • •

Computer Aided Evolutionar y Design 3 Rich ,$hrobe,Waters

to work?
PROGRAMMER: In this dcsign, huckcts will be ordered lists of facts. BUCKET -INSERT will fetch the

bucket in the hash table indexed by its second argument and then use the standard ordered
list insertion algorithm to splice its first argument into the bucket by side—effect.

APPRENTICE: I understand the desi gn , but there is a m istake. If the new fact needs to be put at
the very front of the list , t hcn it is not possible to splice it in.

PROGRA1vIER: In that situation , C UCK ET - INSERT w ill just cor~s it onto the front of the list.
APPRENTICE: That will not work either. You wa nt the fact to become a member of the bucket in

the hash table , but this will not happen in the case where it is merel y coused onto the front.
The buc ket in the table ~‘ill still be the old list which is the CDR of the newly created list.

PROCRAMMER: OK, In that s ituati on, BUCKET- INSERT v,ill not only CONS the new fact on, but also
store the result in the appropriat e table entry.

APPRENTICE: That seems to fix the prohlem, however , there is a problem in INSERT. You said that
the fact itself was to be put into each of the blKkets hashed to. However , the way the code
is wr i t ten , what is inserted is FACT which is the atom being hashed on, and not the whole fact.

PROGRAMMER: You are right again. I should m ake the whole fact be an argument to INSERT 1, and

• pass it to BUCKET-I NSERT. Can you m ake that change?
APPRENTICE: Yes , here is what the code looks like now.

(D E F U:~ INSERT (F A C T) (I NS E R T 1 FACT 1 F ACT))
• (DEFUN INSE RT1 (FACT POSITION WHOLE-FACT)

(COND ((A T O M FACT) (CUCKET .INSERT WIIOLE-rACT (HASH FACT POSITION TABLESIZE)))

(T (INSERT1 (CAR FACT) (* POSITION 2) WHOLE-FACT)

(INSERT 1 (CDR FACT) (+ (* POSITION 2) 1) WHOLE-FACT))))

APPRENTICE: There is still a problem, fr om what I know about this kind of hash table , each f a c t

should be in any one bucket at m ost once. However , I cannot prove that duplicates will not
be inserted. In general , hashing causes collisions and neither INSERT 1 nor BUCKET-INSERT does

• any thing to prevent a fact from getting put in a bucket twice if it hashes to the same index
twice.

PROGRAMMER: Ah yes. To fix this, I will break INS ERT up into tw o parts: one, called INDEX , which

determines the set (as opposed to the multi-set) of indices associated with a fact , and the
other (still called INS E RT) wh ich will call BUC KET - INSERT in order to insert the fact into the
c orrespondin:~ buckets. [And so the sccncrio continues ...]

This scen a r io ilt is t i ales several of the facil i t ie s the type of system we have in mind must
prov ido. riril, it u t inter a ct with the pr ograiii’ om during the design phase checking that the

• design is c ohem ~t and achieves i t s s t atc d goals. Second it must record a representation of the
• (log ical structure underl y ing the design so that this may be used to detect bugs and guide

evolutionary changes. Third, the apprentice mnu~t be able to recognize common design patterns
within the code and to explain t i-ese in familiar , hi gh level terms. It must also use these to

_ _ _ _ _ _ _

-
•--i____

~~~~~~~~~~~~~~~~~~~~~ • • -—•• - -~
---—-

~~~~~



~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘— 

- • ~~~~~~~~~~~~ -

computer Aided Evolutionar y Design 4 Rich,Shrobe,Water s

structure its understanding of the design in ways which make it convenient to reason about the
pr ogra m and about proposed modifications to it.

Ill. Types of Programs -- Al gorithms versus Systems

It is important to distinguish between two quite different kinds of programs: algorithms and
systems. Each kind of pro~ram is important t o software engineering. However , they present quite
different dem ands and requirer- ents. We argue that current program verification techni ques are
most usetti l and necessary for al gorithms. The thrust of our work is directed towards the
problems inherent in the design of systems.

Al gorithrr~ and syste m s dif fer along two primary dimensions: the character of their
specificati ons, and the sources of their complexity. In general , an algorith m is a relatively short
program which is precisel y and conckel y specified. For example , the Knuth-Morris-Pratt and the
Boyer-Moore string matching algorithms each require roughly 100 lines of code but have a very
short precise specification: the answer returned is the position of the first substrir mg of the text
which ma tches the input pattern. An algorithm is built to satisfy a precisely stated specification
which has general utility. Therefore it is reasonable to expect that this specification will not have
to evolve in the future. As a result , the effort required to ac tuall y verif y the program can reap
benefits far into the future. For example , Euclid’s algorithm has survived unchanged f or thousands
of years.

In contrast to algorithms , software systems are large program s with specifications and other
related document ation much larger then thei r code. More important , when specif y ing a system it
is ofte n impossible to state precisely what is to he done. Typically som e clai ms are m ade about
what ri-,ust happen and others describe desirable but less crucial behavior . In any event these
specificati ons often change , and the system is f orced to evolve to meet the new criteria. The
incomp leteness and imprecision of the specif katior is for sys tems makes rigorous verificatio n
difficult , and the impermanence of the specifications reduces the rewards of producing such a
verificati on.

The comple:dt y of a typical al gorithm stems primaril y from clever underlying logic (often due
to obscure opti mizationc) which r~quire~ pr oof in order to be believed. The intricacies of the
&tr ing match ing prograr is ri entioned above would lead one to doubt whether they worked unless a
ri gorous proof were presented. If al gorith m s were subject to ev olutionary change , this intric acy
w ould be a significant liability.

In contrast , a system is usuall y made up of a large number of relativel y sm all modules, each

of which mnv ol’.cs fairl y routine code. An c~pericnced programmer can easi ly understand and
trust the local operation of such a system by recognizing standard patterns in the c ode. In other
words , ,ccO~ t~; tio, i can largel y rep lace formal proof at this level. The complex it y of software
systei ’~ . ari ses prirra ri l y from t h e  nun ber of intera ctions betv ieen modules. These are what make
it diff ic ult to a :scss the f f c c t  of a pr~~po~ed thange to the system. Systems tend to reach a
po in t  wh~’re the number of these interacti ons ovcrwheirr s unaided human abilities to manage them.
From that point on, modifications become increas ing ly bug-prone.

_________  ~~~~~~~~~~~~~~~~~ —--=~~~~~-~-— — ~~~• -- -.



_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _  

i~~ - -- 
_ _ _ _ _ _ _

Cor~pu!cr Aidcd Evo/uiiona ~y Design 5 Rich ,Shrobe ,Waters

F- 
~

~~~~
These distinct ions between algor ithm-; and systems point to the need for different kinds of

design aids in the two dom ains. The designer of algorith m s needs proof checkers , theore m
provers , and verif ication systerris. While these serve a useful role for the system designer as
well , they are rot hi~ bread and butter. Instead he needs tools which can help himr evolve designs
which sat isfy evolving criteria. Rather t han a tool for proving convoluted programs correct , a
system desi gner nc- c-cis a tool which can structure and rerreriiber the straightforward argurrents
for parts of large but routine programs so that the proofs can be used to guide an analysis of the
effects of ri- odif ications.

IV. Problem Solving Theories

Three key ideas in current Ar t i f i c ia l Intelligence theories of problem solving are: problem
solving by recognit ion of the form of the answer , using planning in a simplified “abstract ion ” space
in order to guide the problem solving process , and using debugging in order to transform an
almost right solution into a correct solution.

One hallrrark of an expert problem solver is the ability to recognize the form of the soluti on
to a problem based onl y on a few high level featur es of the problem description. This reduces
the initia ll y unmanageable search in a very large solution space to an expl oration of possibilities

(
within a r iuch si alle r space. In e lc ctr ic al engineering, the form of a solution might be a particular
circuit topology wi th certain component s undetermined. In programming, the form of a solution
mig ht be a part icul a r contro l strategy with unspecified primitive actions. This problem solving
idea finds ts antecedents in the Means-Ends anal ysis of [Newell, et. at., 1959] and in Minsky’s
notion of “ is lands ” [Minsky , 1961] and was later formalized in the Planner programming language
[Hewitt 1972] amid its descendants Conniver [McDermott & Sussman 1974] and QA4
[Rulifson et. at. 1 973] w hore the form of the solution is called a plan.

In s uff ic ie nt l y com plex situati ons , a sec ond paradigm ca l led planning in an abstraction space ,
is also used. An abstr act ion space is a model of the meal world in which some important details
are intention al l y omitted. Recognition of the form of the answer is first attempted in an
abstractio n space. If a plan is successfull y formulated in the abstraction space, then it is rrodified
to work in incroas i i,~ m ore realistic spaces until a sat isfactory solution is found. This problem
solving par~idi~ ri v.as embod ied iii the AO STRIPS program [Sacerdoti 1973].

Both the p~aiining paradi gm and the ab s tr a ct m odelling paradi gm point t o debugging as an
unavoidable part of d esi gning corr plex systems. The role of debugging in problem solving has
been mn- .- e c t iga t cd by Sussman in hi~ HACKER program [Sussman 1973]. When a plan is initially
produced by re (O~ r zm- the form of the answer in an abstraction space , the plan has ass ociated
with it an c-x ptana t ion of how it achieve s its goah . However this “proof of correctness ” is likel y to
be fault y becau ~e it ciepencis on a~sui-nptions in the rrodel which contradict facts in the real world.
The al i o~t — r gli1 plan is rc- hncd by developing a rriorc: real istic model of the situation and then
using the old “pro of cf correctness ” t o guide the debugg ing pr ocess.

We b c i c ’ c t~ c ’c ideas co nsti~i~te the best understa nding to date of how people manage the
cor~ple~ it -,’ of r~ianning and problem 5O ! ’iri~ in comp lex dom ains and theref ore these ideas should

- ---
-

•
-

~~~~-~~~~~~~~~~ -. - -~~~~ -- - --- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • - • -•-~~~~~~~~~



.r ~~ ~~~~~~~~~~~~~~ -_ -~~~~~ 

— —

coii,puh~, Aided Evolutionary Desig n 6 Rich,Shrobe ,V/al ers

form the conceptual basis for develop ing computer aids for software engineering.

V. What Do Engineers Do?

In this sect ion we discuss some specific techni ques which ha- -,e proved effective in more
mature engineering domains suc h as electrical and mechanical engineering and which we think can
be fru itful ly applied to softwar e engineering.

One might think that engineering is mainly concerned with the opti mization of numerical
pararr et c ’ rs within physical systerr s and that computer science therefore has little to gain fr om the
s tud y of m - iethodologies used in engineering. However , although engineers arc at times concerned
with numerical optirrizat ion, it is not their main activity. The dominant problerr in engineering is
the mr anageiiiemit of comp lexity during design and analysis. This can be seen in the following quote
from a standard e lectr ic al engineering text [Bose & Stevens 65].

A phys ical pmob lem is never anal yzed exactly. This is a consequence both of our
inability to describe a physical situation comp letely arid of the increasing com plexit y of
the analysis as greater accuracy is dem anded. A problem that involves events in the
real world is always appmo ac hcd by mnai~ing simplif ying assumpti ons that hold only
approximatel y , thereby iorri’ing a model of the events under study. The problem then
reduces to that of analyzing the model. Ii the assurrptions by mreans of which the
physical s ituation was reduced to the model are reas onable, then our analysis should
produce results that correspond to observed events , and the same type of analysis
should be useful in predicting the behavior for other similar physical situations .

Thus , as the problem solving theori es predict , engincers use abstract models to manage the
compIe~ i t y of thpir doirains . Two partic ular abstraction techni ques which engineers use are: the
c onstructio n of m ultip le iiod~ t & each of w hich is accurate only under a restri cted set of operating
condition- ., nd t ime cle or-posmt ion of corip lex systems into sevemal possibl y overlapping hierachical
Organizations. Both of these’ lechniqucs or it it dc-tails which arc not relevant to the task at hand.
An e~:airple of the f irst techni que is a linear model of a transistor which describes its behavior
accuratel y only when it is operating within a certain range of f requencies and power. Sometimes
several di(fe rent m odels will be used which together form a good overall description , as for
ex a m uic the DC amid freq uency domain rrodels for a circuit.

Erigiiiee~
; use decompo s it ion to break up a large system into a (possibly overlap ping)

hierarchy of ~ub~
y
~ten s. Each subsystem is given a siriiple descri ption which includes Onl y those

• aspect - of ts behavior wh ich are relevant to other subsystems. The whole ar t i fac t  is then
regarded as a loo~cl y couplc-d netw ork in which the behavior of the whole system r a y  be
deduced f r ~~~r t h e  c leccmipt oiis of the suhsyste mi,s . The simplest kind of decomposition involves
onl y a ~ i ~r’ non-ovc rlappin~ i i i~-a rchy . Howe !er , sorret imnes a single component may be logicall y
part of tw o or r ome d :ferent ~ubsyste rr s , and sor e- t im - es  several different decompositions of a
system are necc ssa ry in order to derive conven ient descri ptions for all of its behavior.

_ _ _  
-

________________ - ~~~~~



—
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~ -

~~~~~~ 
—

-

Con cuter Aidcd Evolution ary Design 7 Rich ,Sl7robe ,Waters

Decomposition is al ready a common technique in computer science. The use of subroutines

as proc c’c iural ~l s tr ac t i ons described by their input-output behavior is well established. Data
abstract ion techniq ues al low a another kind of decor rposition. Typically, these techniques are
embodied in the features of a prograrriming language suc h as CLU [Liskov et. al. 1977] or ALPHARD
[Wu lf 19743. While we recognize the iri-proveri ent such languages offer o’.’cr earlier languages,
we do not be l ie - c  that they solve the whole problem. Convenient anal ysis frequentl y requires
multiple decompositi ons of a single sys tem , but unfortunately programming languages require that
a s~ st~ rr, be rep - csented by a sing le decomposition constained by the way in which the program
is intended to c- xe cute.

The idea of probleri solving by recognizing the form of the solution appears in engineering
bo t h  in desi gn and analysis. Evidence of this is the de .eloprrent of a vocabulary of useful na cro
structures whi i h cons t itute the abstract torn ’s of the solutions for broad classes of prohlerrs . In
any engineering d~scipl inc , the’ basic units of desi gn arc a set of prim it ives (suc h as transistors ,
resistors , etc. or CON S , CA R , CUR , etc. ) and rules for their legitimate corr ibination. These generate an
infinite number of leg itim ate combinations only some of which are useful. The macro structures in
the interrrediate vocabul a ry serve as stepp ing stones which make it cognitivel y feasible t o derive
the useful corr Liir,ations from the’ primitives.

We do not intend to impl y that there is a unique set of univemsally useful intermediate
constructs but rather that it is always iruit iut to look for them. Different domains emptoy quite
different engineering vocabularies. Once an intermediate vocabulary is developed it expands the
cogn iti ’e range of those practitioners who learn the vocabulary. As a result , they are capable of
conceiving of yet m ore complex corrbinations which heads to a higher level eng ineering
vocabulary. For ox a r- p le, in electr ical engineering one first leamns to engineer useful networks
using inte r~i c- d~ate const ruc ts  such as voltage dividers. In order to combine these into rrore
co rrphex a rt fa c t s , one lea rns  a hi gher level vocabulary including notions such as oscillator s and

amplifiers.
In pro~ rai-nrning the connection between the nicr oscopic and the macroscopic is also

mediated by an inter mediate engineering vocabulary. If one is to work with a part icular
progrdniriing language one rrust know what its pr im it ives do. However , program anal ysis which
exclusive/ v concen t ra t e -s on the axior r iatic descri ption of progmam primitives is inadequate to deal
with the c o riiplexit y of real world progra m s. Indeed most of progma m understanding happens at a
macro bevel wh ich is ri ore appropriate to the task at hand. It is at this level that one leamn s and
remembers the useful patterns of doing th ings F(- e~airp le , it is more fruitful to think about two
linked his t ~ , and about “sp l i c i n g ” as a kind of operation on these higher level objects , than to think
of computer rre m ro ry as a large collection of cells and about changing pointers in particular cells.
In this way , v,i are much more likel y to a rrive ~t a corrp utationa hhy feasible and easily
understandable des cr ipt ion of the behavior of a program . One of our research goats is to create a
catalog of intr rr-edi atc’ eng ineering voca bula ry for pr ogramming.



T L L  _- -- -

Computer Aided Evolutionary Design 8 Rich Shrobc ,V/ ,~ ers

VI. Plans end Teleology

An engineer riust have a representational systerr i within which it is possible to utilize and
coord inate information derived through the techniques described above. In rrost engineering
disci plines them ’ is a notion of t im e “design plan” wh ich forms a skeleton around which all of this
inforrnat io i is arranged. Of all the issues discussed so far , the design plan is the one least viell
addressed by ot hiem current work in computer science. Because the use of plans in softwar e
engineering is a cen tral them-n e in oum approach , we begin the presentatio n of our current work
with an explanation of whet a plan is and how it is represented.

In traditional engineering cr  software engineering, the behavior of a device or part of a
device cam i be described in two ways. Sonic properties of a device are independent of its context
of use. These properties constitut e the intrinsic descri ption of the device. For exarrp le , a
ca pa ci t o r  can c~ descri .ied by the relation 1(t) = C dv(t)/dt. The LISP function APPE ND can be
described ntm i rs i c ah i y by it~ input—output behavior of returning the concatenati on of its
argumiiertts . Intri nsic descni ptiomis correspond to specifications in the literature of sof tware
engm nee rmn-~.

A device ay also be described by its role in the plan for a larger mechanism. This is its
e~trin~ic clos ript ion. For example , a part ic i la r  capacitor may -be descr ibed as a coupling
capacitor , a bypass capacitor , or a tuning capacitor , depending upon its purpose in the circuit.
Simi(i~m( y, pp Pc riti may be used to produce the union of two di&joint sets represented as lists , or to
at tach a sL ff ix to a root word represented as lists of charact e rs. The abstract f orm of an answer
retrieved in the process of engineering design is a plan in which each part is specified onl y by its
extr insic proport es. Synthesis involves filling each role in the plan wi th a part whose intrinsic
descmiptio n s a t is f i es the given extrin s ic descri ption.

A sing le part may have several extrin sic descriptions corresponding to multiple needs that it
sat isf ies in the larger mechanis ri . For ex ai ip le , a screw in a camera rray fasten two plates
tog ether and also provide a fulcrum- about which to pivot a lever . The’re rray also be several
plans for a given device , describ ing its structure in different dimensions. In this situation , a part
may fill ~c”.’c ral d i f f e re n t roles in several dif ferent plans. For exa m ple ri a radio—frequency
amplifier an inductor m a y  he both part of a resonant circuit in the frequency domain plan and part
of th~ bias net . ork of a transistor in the DC plan.

The essence of understanding a mec hanism is knowing the purposes of each part. This
i~~’OI’:~-c ln iildm n~ a de s cr ipt ion of the mechanism v.- h ich ma tches each part with its roles in the
appmopr ate plans. Each role in each p lan must be fil le d by some part of the rnccha i ismn and the
nt r n- c properties of that part mList satisf y the extrinsic properties of its roles.

u n i t y of this hind of understand ing is t h a t  it  f ac t o rs  knowled ge. A given plan frag ment
can ~ppe ar ~~~ . p,~rt of the plans for m a n y  different devices. Therefore understanding the log ical
structure of a r ia n f i -a~,r cnt (which may be ve ry  d iff i ~uht ) need only happen once. Any properties
of t i~e p lan 1 r .~~~~nii t which can be proven , are knowi, to hold wherever the plan is used. These
plan frag rrcnt s. ,-n~c the interme d iate vocabula ry items discussed in the last section.

___________________________ - - 

~~~~ S ~~~~~~
— -~~~~ — __ts_ -,‘-~~~~~~~~~~~~~

- 5— ,_~__ — -~~ ~ - —

r ~~~~~~~~
. -

Cornputor A/ dud Fvo/ utionary Design 9 Rich,Shrobe,Waters

VH. R’?presenting Plans

In order to look at programs from the viewpoint of a design p lan , we have devised a
forma list -ri called p/an dia,~rams which can be used to describe both abstract program patterns and
concrete programs . The basic entitie s in the plan diagram formalism are segments (input/ output
abstractions) arch data objects. The f orm alis m suppomts hierarchical description by allowing
segments ~vi thi ii n egi-ients (subsegr-ents) amid objects within objects (suhobjects). The rrost basic
relati onship between these entities i~ t he app licati on of a segment to a set of input objects ,
yielding a set of output objects. The formalism includes four other primitive relationships: data
f l o w , control flow , control splitting, and control joini ng. It is a stmaightforward matter to give the
proof rulc~ for the formalism , as has been done in [Rich & Shrobe 1976; Shrobe 1978).

In order to analyze programs v iritten in a particular program ming language one needs to
have definitions for the language ’s primitives. We divide programming language primitives into
tw o categories: connective tissue primitives such as IF-THE N- ELSE , WHILE , variables , argument
passing, etc. v. hm i c - h are concerned solel y w ith imp lementing data and control flow , and actions such
as arithmetic operat ions , CONS, CAR , CUR , etc . The first category is describe.d by a translational
semr iatics in which the primitive is mapped into the appropriate pattern of control flow and data
flow links. Actions are represented as segments specifi ed by pre-conditi ons and post-conditions.
We have alread y constructed such language semantics f or LISP [Rich & Shrobe 1976) and
FORTRAN [Waters 1976 ,78] and have i m p lemented systems which translate programs writ ten in
these languages into the plan diagram for m alism. The translati on process removes many of the
surface features of the particular programming language, creating a flow graph which gives
greater insight into the underlying logical structure.

Each segment in a plan is constrained either by its spec-type or by its plan-type. The spec-
type of a segment is a formal statemen t of the relationshi ps w hich are expected to hold for the
input objects prior to its execution (pre — conditio ris) amid the conditions which are guaranteed to
hold in-mediatel y following execution of the seg m ent (post-conditions) . These conditions are
expressed in a ~‘aria iit of the Situational Calculus of [McCarthy & Hayes 1969). Each segment has
associated with it an input situati on aiid an ouput situation which are representations for the state
of af fa irs on entry to and on exit from t h e segment.

The plan-t ,’pe of a segment constrains w hat plan (i .e. what subsegments , and data and
control f low) is us~.d to irriplemnent the behaviom specified for the segment by its spec-type. In the
case of rc-curs i’.-e prograi- is amid loops (which are represented as sing ly recursive programs) the

plan—t ype for some subsegment will be the same as the plan-type f or the overall segment.
Data obj ect s. are similarl y described by objec t-type amid plan-type. Object—types are a kind

of data abs tm ac tio i i decoriiposing a data Ol)ject into subobject s satisfying a specified set of
contraint s . 1 i p ~c i cn tat ion rules constrain the plan-t ypo of segments according to the plan—types
of their iiiput ~rid output obje cts. T h e coordination of procedural and data abstraction is an
import ant and no -c-I f . -a ture of our repmc sc rmtion system.

The plan diagram formalism is intended t o fac i l i ta te our goal of cataloging the common and
useful technique s of progmar- riunig . The spec-t ypos and object-t ypes are amranged in a tangled

—. — - ~~~~~- ~~~~~~~~ L

___________ -: ~~~~~~~~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

~ornputcr A/dod Evolutionary Ocsign 10 Rich,Shrobe,Waters

hierarch y with ru-ore specific types inheriting descri ptions from their super-types. For example,
the LISP-sty le association- list is a specialization of both the object-type linked-list and the
object-type associative-data-structure. -

In order to represent the logical relationships in a plan, a plan diagram is augmented w ith a
network of purpose links which summarize how the parts of a program interact in order to
produce the behavior of the whole program . These links make it possible for a design aid system

to exp lain how a program works, amid reason about the potential effects of a modification. There
are two basic ways in which t he appropriate purpose links can be developed for a plan. They can
be cop ied by reference to a stored plan in a catalog of programming knowlege (see section X), or
they c-an be derived by reasoning directly al)out the plan itself.

Symbolic execution [Hewitt & Sriith 1975; Hant ler & King 1976; Rich & Shrobe 1976,78) of
plan diagrams [Shrobe 1978) can be used to reason about programs and to create the appropriate
purpose links. Sym bolic execution of a plan operates as follows. A set of anonymous objects
(skolerri constants) is created , one object for each input to the outermost segment. Data objects
are propagated along the data flow links leading to the initial subsegment. A subsegment is
marked ready whenever all of its incoming data objects are present. The symbolic execution of
the subsegrricnt is the rm begun. This is done in one of two ways depending on whether it has a
spec-type or plan-type.

If the subsegment is described by a plan- type its symbolic execution proceeds recursively.
Its inputs are pmopa~ated along its dMa flow links to its subsegments and these are then executed
as they become ready. If a subsegment is described only by a spec-type , it is first necessary to
den-onstrate that the subsegment ’s pro-conditions are satisfie d. If this demonstration is
succe~~fiil, thon the subsega~ent is applicable. Anonymous objects are created to represent the
outputs of the subseg m ent and the post-conditiom is of the subsegment are asserted to hold in its
output situation. The output objec ts are th en propagated along data flow links to other
subsegments which then bec ome candidates for symbolic execution. Once all the subsegments
have l)een executed , one then demonstra tes that the assertions of the supersegment hold in its
output situation. If this is successful , then the plan has been shown to achieve its desired ef fect.

Time log ica l arguments which are constructed duming this process are summarized into
purpose links which capture the- underlying tele olog ical structure of the plan. There are two basic
kinds of purpose links: prerequisite liflks, which show how the pre-c onditions of a subsegment
arc satisfied by the interaction of the pro-conditi ons and post-conditions of other subsegments,
arid ,achie ve links , which rec ord how the pre-conditions arid post-conditions of the various
subsc~ miiemi ts im it c ma ct to achieve the post-conditions of their supersegment. These are similar to
the proof sum marizat i ons used in [Moriconi 1977]. -

A plan may be thought of as an abstract program coupled with a logical analysis. However , it
is important to note that this logical analysis need not necessarily be a “proof” in the sense of a
guaramitc’c of correctness. Our reasoning system [Shrobe 1978) is capable of conducting logical
argumi ent !- which range from inf om m rmal to rigorous. In many cases the plan for a program will only
contain “com ;i r- ion se munuc ” or engineering type anal ysis which is inadequate to guarantee
correctne ss un der all conditions , but which is good enough for purposes of explaining its



computer A c/ ed Evolutionar y Design 11 Rich,Shrobe ,Walcrs

teleolog ical structure. When it is necessary, our reasoning system can be asked to carry out the
ver i f icat ion of cer ta in  mnodutes wit h full rigor. I-however , in this part of the pmocess , we have m ade
no ad- ‘ancec o-ynr other verificati on syste ms. Our main goal is not the proof of correctness of
large sof tware s~-s1crr -rs , but rather an eng ineering oriented explanation and bookkeeping facil i ty
of some so phistuc Ati on i which will make it easier for a sof tware engineer to modify a system while
convincin g h u r s-c If that it does what he intends.

VIII . Temporal Abstrac tion

Temporal abstr act ion [Shrohe 197~; Waters 1978] is a rruodehling technique which makes it
more convenient to anal yze the logical structure of recursive plans. In a temporal model, the time
bohavior of a prograli - is umif olcl c- d so that the occurrences of the subsegments can be regrouped
to r;av.e C~~n i nOri pr og ramr - ri -u ing frag rients n-iore easil y identifiable.

For e~c a i - - p : ~- , cons ider the following recursive Lisp program which builds a list of the terminal
nodes of a binary tree.

DEFu r~ D EPTH-F I R S T - F R I ra F. (TRF E
(PR OG (F RINGE ) (DE PT H- F IRS T- FRINGE1 TREE) (RET UR N FRINGE)) )

(DEFUN DEPTH -F IRS T -FR UGE1 (NODE)

4 (COND ((ATOM NODE) (SETQ FRINGE (CONS NODE FRINGE )))

(1 (DEPTH-F IRST-FR ING E1 (COR NODE))

(DEPTH-FIRST .FRINGE1 (CAR NODE)))))

We c an an a l yze this program as the compo sition of three fragments:
( )  a t r c e — t r a - .’c rsa l sc~ iiient , irip ler iemitcd by the depth—first plan, which

enun- r~erate s the nodes of the tree ,
( D EFu N D EPTH -FI RS T -F R ING E 1 ( NODE )

(CO ND ( ( A T O M  Nocic )

(1 ( DEPTH-F  IRST- FR INGE1 (CUR NODE))

(DEPT H-F IR$T-F RING E 1 (CAR NODE)))))

(ii) a f ilter ~eg me-nt which selects out the terminal nodes for further processing,
(COND ((ATOM NODE) . . . NODE .

(ii i) and an ;ccu i ulation segri-ent wh ich builds a list of the selected nodes.

(PROc~ (FRING E) . . -

- . - ( . S E T Q  FRINGE (CONS NODE FRIN GE))

This intuit ive deco mposition int o a g~ iicrator , a filler and an accum ulator has considerable

conceptu al pc.. ~~
- . This section will m- l .etch the for mnal i~’ation of this decomposition used in the

apprent c~— s-,’ - tc- i a. The i cthod is be based on alial y?ing the history of applicati ons during the
course of an c-i~~ ire com putation and groupin g these irto occurances of segments of like type .

Given a I of inputs to a plan  diagmam , the mulc~ for symbolic evaluation unambiguously
specif y which cit its ~ul s~ gmrents wi il be applied and to which arguments. Each such application
is descr ibed by an inpu t s i tuat ion , a set of bindings of data objects with the input names of the
SUb-se~y - i- nt , an (n;~ ;ri . it s i tuati on, and a eel of bindings for the outputs. The data and control flow

_______ - - 
-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

~~~


-___________ -
~~~~~~~~ ______

computer Aided rt ’oltitio~~r~ Dosi~n 12 Rich,Shrobe,Waters

links impose a natur al partial order on the applications corresponding to their order of execution.
A graphical representation of the plan dia~re~rii for Depth-First-Fringe is shown in Figure 1.
(Cr oss-hatch ed lines represent flow of control , solid lines represent data flow. A box with tw o
sect ions at its I)a~.e is a test , one w ith two sections at its top is a Join. A curl y line indicates that
t he inner segri- c nt  is a recursi’ .’e instance of the outer segment. Temr,poral abstraction makes it
possible to model this progra m with the plan diagram of fi gure 2.

Temporal aiia !ysis beg ins with the notion of an occurance set of a particular plan (or spec)
type. Given ami application of a plan diagram the “occurance set of typel” consists of al~
applications within the plan diagram whose type is typel . In the Depth-First—Frin ge program
above there are three occuranc e sets of interest: ( 1> The occurance set of type Depth-First—
Fringe l, (ii) The occurancc set of type “Atom Test” and (iii) The occurance set of type “Cons”.
These correspond to the three fragments of code identified at the beginning of this section.

- 
__________

Ii~~~’ ___
_

___
I ________

____  

[ciirj i~’~ ii - 
FR~.r Jj c... ~~.,.

L 
1)i~

- 
~~ 

I 
_ _ _ _ _ _ _ _ _

~~ 

- I
~~

‘.tvi
~ 

—

Figure 1: Plan for Depth-First-Frin ge. Figure 2: Temporal model of Depth-First-Fringe.

Ne~t we coi i s i der the sets of inputs amid outputs of the segments within an occurance set.
An occur ance - c t  coi isisls of appli cati ons of segments of a common plan (or spec ) type; the plan
diagrar i for thi’~ t ype provides a set of local nal-ries for these segments’ inputs and outputs. For
cxam p~e, the plan diagra~-i-i for Dcpth—F m rs t - Fmi ngei contain s the input name “i-Iode”. It is useful to
think ot the net  of objects -.u hiich are bound to this miaiie in any application of a segment of type
Dcpth_ Fm rs t_ Fr i~gc1. Given an occ urance set and a local name, we define a temporal collection to
be a ~.u- t  of p~i!rs. consistin g of (1) data objects which are bound to the selected local namrm e and (2)
the a pp lm c al iorm iii v;hic Ii they are boumid. The te m - i-uporah collaction is partiall y ordered by the
natu ral order of the applications. If Depth-First-Fringe is applied to the data object Tree—i then
the te m poral coll ection of Node inputs to segm ents of type Depth-First-Fringe l will consist of
pairs c ontainin3 a ll the nodes of Tree-i in dept h first order. This is shown diagramatically in
Figure 3. 



-~~ -

Cor.mputer Aidcd Evolutionar y Design 13 Pich ,S/,robe ,Waters

For every ri-ember of the occur ance set of type Depth-First-Fringe i there is a data flow link
to arm occurance of typo Atc n i - les t .  Such a collection of identical data flow links is catted a data
flow bundle. The collection of objects which flow along these links for m tv.’o temporal colloction~,
one at t he segmen t s on the initiating side of tlme data flow links and the second at the terminating
side.

Using these concepts to exar,iine the pr ogram Depth-First-Fringe makes it possible to
dec ompose the progras i -i int o units which can be analyzed by inspecti on. The occurance set of
type Depth-First-Fri ngel is— a Binary Tree Traversal; each segment in the set either has an

at omr~ic t~ode input , or it has data flow links to a CAR and a CDR segm ent which in turn have data
flow links to oth er s-e~,memits of type Depth-First-Fringe !. As already mentioned the ter~poral

collection of 1~od3 inputs t o  ri orm -~bors of this occurance set contains all the Nodes of the tree.
There is a data f low bundle from this occurance set to the occurance set of type Atom Test. The
latter set is a l i / Icr , an occur ance set of identica l test segments. Its input temporal collection
contains all the nodes of the tree. Its output temporal col lection is the sub—collection consisting of
all Nodes w h ich sa t is fy the Atom Tc-st. These are the terminal nodes. There is a data flow bundle
c a r r y ing this subset from the Atom-Test occumam ice set to the Cons occurance set. This last set is
an accumulation; each seg irent in it takes one input fro m a previous Cons segrr~ent. The second
input to each of these segments flows to it from a member of the Atom—Test occurance set. This
decomposition is shown diagraniatica hly in Figure 3.

Test. 
-.

Tr.m~i4 [ car 
~ [ c4~] 

.....oa4,gcl~~& Smi,+

up Pki, ~~e2.

Frhi ~Ij _...J f ~~ChS3L% I
i~~ + 

‘

~~~~~~ . f 
‘
~“~~± ‘.c.~&.i.s

L~ L’- L L~ L”L~ 1~~~
PIkr

_ _ _ ______ _ _ _ _ _ _ _ _ _

s
~r~~~~~~~ rc_Nc.m. ~~~

__ -

Figure 3: Terripo ral decomposition of Depth-First-Fringe ,

We now build a m odel of Depth-First-Fringe. We model each occurance set as a single.

segment ; cacti d a t a flow bundle as a single data flow link and each temporal collection as a single
data object. The res ult ing mriodel consists of only three segi-iients Dinary Tree Traversal , Fitter ,
and Accumul atio n. The’ data flow links in t h e model form a simp le pattern , each segment taking a
sing le input f r om i its . pred ecessor. Fromi this viewpoint the pmogram appears is seen as a simple
composition . No tc e that the temporal rriociel suggests the following clear and concise explanation
of Depth-First-Fringe: “The program c onsists of three steps , firs t it generates the nodes of the

_ _ _ _ - ~~~
—-

~~~~~
- - 

-
,
~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~••~fl~ 
—— 

~~
- - 

computer Aided Evolutionar y Design 14 Rich,Shrobe,Wafers

tree, second it selects out those nodes vihich are termr~inals , and third it builds a list of these
nodes.” This model is shown in figure 2.

IX. Plan Building Methods

The entire process of anal yzing a program would be made much easier if it were possible to
decide how to break a program into parts before determining what any of the parts do. One
approach t o this segmentati on problerri is taken by Waters (1978) who has developed and
implemented a system which cJ~ covers the logical segmentation of a large body of common
progran-is. His analysis is based solcl y on recognizing topolog ical patterns of data flow and control
flow without regard for the specificati ons of the various operations involved. These patterns are

called plan building methods (PBMs), because they can be thought of as instructions f or how to
combine plans. together to form more complex plans.

The sircplcst PBMs correspond to the standard structured programming notions of
conjunction, composition , amid cond itional . More complex PBMs decompose recursive plans by
making use of tei- iporat abstraction and trajectories.

The recursive PBMs m ake it possible to construct a temporal m odel for a recursive program
in which its structure is revealed as the composition of standard segments which can be
understood in isolation from each other. Three basic recursive PBMs produce three types of
stan d ard rec ursive segmeents: termi nations , filters , and augmrentatior is.

A filter segii-ent is one which tests a temporal sequence of values and selects out a
consistentl y ordered subset to be acted on by other segments.

A termination segi:ient is One which tests some tcn- porah sequence of values of values and
can cause the termination of the recursive program as a whole. (The ATOM test in the DEPTH-FIRST-
FRINGE progma m doubled as both a filter and a termination segment). As such, it determines the
length of all the trajectories in the teniporal dec omposition of the given recursive plan, but does
not af fect  what is computed in these traj cctories.

All ot l~~r segrr ent ’. are referred t o as augmm-ientati ons. Augmentation s take in trajectories of
values and pc rfori- ii calculations in ordcr to create additional trajectories of values. Typ ically, an

augmentation will have feedback of data flow to itself , so t h a t  it can utilize past values in its
computations. The accumulati on segm-ncnts in Section VIII are augmentations.

The amial ’cis of a recursive plan using PBMs tumne out to be strai ghtforward. The basic idea
is that a part of the program af fects  the rest of the program only if it eith er has data flow to
some other part of the prograril, or controls whemi some other part of the program wilt be
executed. Decomposition is achic- .’ecf by locating sr~gr ents. of the plan which do not af fect
any thing in the rest of the pian. (Note that this has to be weakened slight ly in the case of
terminations .) When suc h a segment is found, it is pulled out of tl,e plan and the process is
repeated until nothing else can be pulled out. The segments that are pulled out arc connected
together temporall y by traj ectorie s as explained in Section VIII. Thus, Waters ’ anal ysis provides 

)
one i eai ,s-- of decomp osing systems into loosely coupled sub-systems.

An experiment was performed in order to determine whether or not the particular PBMs

_ _ _  

_ _ _ _

_ _ _ _ _ _
________________ —



- —~w—, .
~~~ 

-.
~~~~~~~~~~~

-“,
~
,.. —

~~
—-—.--—.,-—-- 

~~~~~ 
—- —.,

~~

—
.~ — ~~~~~~~~~~~ _~~~_ _ ~~~~ — —~~~~~

--- - ~- —

computer .4idccI Evolutionar y Design 15 Rich,Slirobe,We,ters

chosen had a wide range of applicability. A randon -i samp le of 20% of the prograrr~s in the IBM
Scientif ic Subroutine Package were anal yzed in terms of PBMs by hand. All of the programs
turned out to be analyzable in terrris of the the PBMS. More importantly, nearly 90% of the time ,
the analysis broke the prograrrs up into segmrents which were so simple that it was trivial to
understand what the segi-i-ents themselves were doing.

X. A Library of Pl~n~ and Analysis by Inspection

As we have seen , one of t he mrajom goals of temporal abstracti on and POM decomposition is
to faci l i tate anal ysis by inspection. TI-me basic idea is to ana~yze a given program by rec ognizing 3
patterns of seg i- icm its in the decomposed plan as instances of commonl y known correct plans
stored in a library. Work such as [Barstow 1977] suggests that it is possible to catalog
substantial portions of programming knowled ge in a reasonably concise formalism. We have begun
a simi lar cata log imig effort [Rich forthco ming] using the plan f ormalism , which we believe wi l l have

several advantagss . Most important among these is the fact that our plan library is not biased
towards either f-ymitliesis or analysis , bu~ atteri~pts to capture the knowledge underlying both.

The plan library is a formalization of the intermediate vocabulary (Section IV) of software
engineering. It includes standard plans (patterns of data flow and control flow between specified
subsegments) for iri - ple rrenting common input-output specifications , and standard plans (sets of
object s with con stra ints between them) for implerimenting corrirrion data abstraction s . Plans in the
library arc’ pre—prov c ri , i.e. they have attached to them exp lanations that can be combined with
the explanations. of other plans in order to arrive at a co m plete explanati on of how a given
program work s.

Examples of - plans that we have form alized arc : (data plans) implementing a set as a list ,
• implementing a binary relation ~s a hash tab le, implementing a stack as a sequence plus a cell ,

implemciitiiig a tree using pairs; (procedural plans) list traversal , tree traversal , filtering, linear
search , seqtme nt~~l ~ccurrulation . Many of these plans fit into a specializ ation hierarchy which aids

in find ir~g t h e rv~ht plan during anal ysis or synthesis . For example , binary tree traversal is a
specia lization of tree traver sal , and hash tables are a specializati on of associative data structure.
One of our research goals is to extend this catalog to include even higher level concepts , such as
interpreter , data-- based system , etc.

Recognition of the PBMs vias so succ ess ful beca use there were a small number of them and
they v.’ero all ve ry cilferent from each other. Recognizing instances of libr ary plans in the pl an

f or a given program will be rrore difficult because there are many plans in the library and they
tend to have some ieatur es iii common. Our f m r s t approach wi ll be to see how far we can get

continuing the bottom-up st y le of reco :~nition from P[3M analysi s into recognition of the
intermediate vocabulary. However , we will certainl y have t o eventually develop some top-down
recognition s t r a t e - ~.iec to make it possible to meco ~nize the very high level concepts.

_______— ~~~~~~~~~~~~~~~~~~~~~~~~~ -- - —
~~~~

--
~~~~~~~~~ - -  -~~~~~~~~~~ - — - ~~



~~~~i ~ ,,~~~~~~~ 
-
~~~~ 

—
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

com puter Aided Evo1utionar~’ Design 16 Rich,Shrohe,Wat ems

Xl. Dependency Directed Reasoning ~nd Program Modification

A prototype dependency directed reasoning system [Shrobe 1978) has been implemented in
the AMORD progrcimriling language [do I<lcer et. at . 1927]. In a dependency directed system every
new assertion entered into t h e  data base is accor rmpanied by a j us tif ication stating which other
asserti ons form the logical support for the new one. The justification itself is an object which the
system can inspect and manipulate. -

Assertions in the rcasonin~ systerri have two states: in or out. An in assertion is one which
is believed. An out assertion is one not currentl y believed. A special module called the Truth
Maintainence S-jsteri i (TM S) [Doy le 1978) is responsible for guaranteeing that all assertions with
valid reasons to be believed are in and all assertions which lack valid jus tifications are out. This
faci l ity is particularly flexible because an assertion can be justified by the lack of valid support
f or sor e other assertion. Technicall y this means that the asserti on Fl may have a justification
which depc-~nds on the oufness of some other assertion F2. This amounts to say ing that as long as
there is no reason to believe F2 one should assume F!. If reason to believe F2 is ever discovered,
the TMS will auto m atically bring F2 in and 11 out. Addition of an assertion (F2) can cause another
assertion (Fl) to becoi- ic  invalid. Logics with this property are called non—monotoric
[Doyle 19Th;]. The semantics of such log ics is discussed in [McDermott & Doy le 1978).

We see two key applicati ons for dependency directed reasoning in software engineering:
hypothetical reasoning during theorem proving and analysis of program modifications. For
example , [Shrobe 1973] describes the use of dependency directed reasoning to reason about
side-effects by first assuming that the degree of sharing between co m plex data structures is
limited. Various desired properties of the program are then proven under this sim pl i f ying
assumption. Soi - retii -res such a cursory anal ysis is all that is appropriate. However , when a m ore
careful expl oration is des ired, the assumption c-an be removed and replaced by a more cautious
assuiiption or by no ass.uirption at all. In many cases , so m e  of the imrip omtant properties of the
program do not depend on the assumption and remain in. However , if some property does in fact
depend on the assumption it will go out indicating that the original proof is no longer valid under
the c oiiditioiis of sh aring. A i-~ore com plicated pr oof of that property can then be aitempted.

A dependency based reasoning sys te rm als o rmiakes it possible for incremental changes in a
program to necessitate only inc rementa l changes in the analysis of the program. Suppose , fo r

example , that a prograrriri or decides to change the representation of sonic data object from arrays
to binary tr ees . He would then replace all instances of loops enuriierating the elements of the
array with tree t rave r’  - enui-m ier at in; the- iiodcs of the tree. A lthough the new code might bear
l i t t le s up e m-fici al rese rrblamice to tI -c old code , [Shirobe 1978] shows that dependencies make it
possible to ha:,cile this change by an inc rc iucnt a l  re-anal ysis of the program rather than by a new
an a l~ ~.is from scratch.

[Do-11e 197~ ] shows how dependencie s can be used to achieve many of the control
disc iplines ‘.~,- hicl i  have Ueen used in automated theor em pr oving systems. Most irriportant amrong
t hese is dcpc~dc,,c~’ thrcc tcd I~~cI !r ~ c I.i ’i ~ iii which a co ntra diction is rerroved from the system

by fmr ’ -t identif -,-ing those assu m ptions which lead thr ough a chain of dependencies to the

— - ~~~_- ~.—
-
-—~~~~~~~

--



— -~~~~~~ = ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -

~or~-iputer Aided r~oIut;o,~ ry Design 17 - Rich,Shrobe,Walers

contradiction. A now set of dependencies is constructed which guarantees that all of these

assumptions cannot be tm ~t t h e  same time. T h e reasoning system can then select an assurraption
to reject. [Stallman & Sussrnan 1977] show how this technique reduces corrbinatoria l explosions
in an electr ical circuit analysis system. [Shrobe 1979] shows that dependencies are adequate to
achieve the ef fect  of the contexts of QA4 [l~ulifson et. al. 1973) and Conniver
[Mc Derri- ott & Sw- s i - - a r m 1974 ] while avoiding some of their problems.

XII. Conclusion

We intend to fur hter develop the modules we now have in order to i m p lement and
experiment with a computer system that can understand and reason about program s using the
meth ods and representations presented above. This system should be the prototype for an
interactive pro gram -~m-- ing environr rent in whkh both the compu ter and the human programmer
cooperate to produce software irmore quickl y and reliably than either could do working alone. In
this enviroru-rent the progra m mer v’ill treat the computer as if it were a colleague, explaining and
developing the progra m design interactively. The computer will play a passive role; its strength
is not desi gn but rather careful bookkeep ing anci criticism.

Ours is Only one of riiamiy approaches towards alleviating the currrent software crisis. High
level laiiguages , structured programriiing, verification , and automatic programming also make claims
t o being part of the solution. Indeed, a pluralism -mi of appr oaches seems both warranted and
necessary. Hov.’ever , with the excep tion of [Moricorm i 1977], our work appears to be the only
project which directly confrom its the issue of increrr ontal and evolutionary design of large
software syste m- i-s .

In com it ras t to autom-natic pr ograrr rring and the most ambitious high level languages, the design
aid approac h allows an important simplification , namely that the computer need not be an expert
in questions of eff ic ie ncy. If languages , corrpi lers , and automatic programming systems are to
raise the level of abstraction of programming significantly, thereby hiding eff iciency
considerations , t h en they themselves mus t possess an expe rtise in efficient implementation
resonabt y close to thai of a competent pr ogranm n-mcr. Otherwise , they will not be used. A design
aid system , in contrast , can provide significa nt assistance with virtuall y no understanding of
eff iciency at all. Furthermore , as techni ques for reasoning about efficiency are developed they
can be added to the system. There is alv,’ays the escape hatch that the programmer can modif y
autor rialical l y generated code without losing the benefits of the design aid. Thus our approach
allows a smooth transition fror rm a passive ass istant to a mare automatic system.

We also set a more modest re-search goal in comparison to program verification. We do not
seek to ~,uararm tee the correctne ss of a large software system , a task we feel is very much harder
than w hat current technology can manage. We set instead an intermediate goal of understanding
The structure of the system and using th is. as a guide to bookkeeping and checking during design
and mnodificatioii . V-k c~ pect that as our technology f or automatically deducing the logical

struc ture of prog ram -s progresses it will find application in the area of automatic verification. This
should eve nt im~ l l y rriake it possible t o construct verifications (perhaps even for large systems )

f5
~

L ________— ~~~~~~~~~~~ • • ~~~~~~~~~~~ ~~~ -: -



- com puter Aidcd Evolutionar y Dcstgn 18 Rich,S hrobe,Wat ems

which are more intelligibl y structured than presentl y is the case.



_ _ _  ~~~~~~~~~~~~~~~~~~~~~ -~~~~~ —

Computer Aided Evolutionary Oesign 19 Bibliography

Bibliography

Barstow , David [1977], “Aut o i--atic Construction of Algorithms and Data Structures ”, PhD. Thesis,
Stanford University, September 1977.

Bose, Ar iar C. a -m d Stevens , Kenneth N. [1965], “ Introductory Network Theory ”, Harper 6- Row N.Y.,
1965, page 1.

do Klcem , J.; Doy le , J.; Steele , C.; and Sussman, G.J. [1977], “AMORD: Explicit Control of Reasoning”,
Proc. of the Syru p. on Al and Prograrrming Languages , August 1977.

Doy le, Jon [1978], “Truth Maintenance Systems for Problem Solving”, MIT/AI/TR-419, January
1978.

Hantler , Sidney and King, James C. [1976], “An Introduction to Proving the Correctness of
Prograi- ms ”. Cori-iputing Surveys V8 ~3, September 1976, pp. 33 1-353.

Hewit t , Cart [19723, “Description and Theoretical Pnalysis (Using Sthcmata~ of PI W’-INER: A
Language For Proving Theorems and Manipulating Models in a Robot”, MIT/Al/TR-258, April
1972.

H e w i t t , Carl and Smith B.C. [1975], “Towards A Prograrr rring Apprentice ”, IEEE Trans. on Soft. Eng.,
V I *1, March 1975.

Liskov , B.; Snyder , Alan; Atkinson , Russell; and Schaffert , Craig; [1977), “Abstraction Mechanisms
in CLU”, CA CM, August 1977, pp. 564-576.

McCarth y, J. am id Hayes , P. [1969], “Some Philosophical Problems from the Standpoint of Artificial
Intelligence ”, Machine Intelligence 4, American Elsevier , NY , 1969.

McDerrrot , Drew V., amid Sussman, Gerald J. [1974], “The CONNIVER Reference Manual”,
MIT/AIM- 259a, January 1974.

Mcdermott , Drew V. and Doy le, Jon 1978 , “Non-Monotortic Logic I”, MIT/AIM-468, August 1972.

Minsky, Marvin [1961] “Steps Towards Art i f ic ial Intelligence ”, Proc. IRE, Vol. 49, No. 1, 196 1.

( Moni oni, Mark [1977], “A System for Incrementall y Designing and Verifyin g Programns,
ISI/ RR-77-65 , Novem ber 1977; also PhD Thesis Univ. of Texas , 1977.

___  _ _ _ _ _ _  - 
-

~~~~~~~~
- - —

- -- _ _ - -
~~~~~~ -

computer A/dod Evolutionary Design 20 Bibliography

Newell , A. Shaw , J. C. and Simon H. [1959) “Report on a General Problem Solving Program”,
Proc eediri-~s of the International Conference on Information Processing, Pairs UNESCO House
1959.

Ric h, C. [forthcomrning), “A Library of Programming Plans with Applications to Automated Anal ysis,
Synthesis and Verificatio n of Programs ”, f orthcoming PhD thesis , MIT Cambridge MA,
expecte d 1979.

Rich C. and $hrobe H. [1976], “Arm Initial Report on a LISP Programmer ’s Apprentice ”,
MIT/Al /TR-35~, Decemnber 1976,

Rich , C. and Shrobe , H. [1978], “Initial Report on a LISP Programmer ’s Apprentice ”, IEEE Trans. on
Soft. Ermg., V4 u6 , November 1978, pp. 456-467.

Rulif son, Johns F.; Derk~en, Jan A.; and Waldiriger , Richard J. [1973), “QA4: A Procedural Calculus
or Intuit ive Reasoning”, SRI Al Center Technical Note 73, November 1973.

Sacerdoti , Earl D. [1973], “Planning in a Hierarchy of Abstract Spaces ”, IJCAI—73, August 1973,
pp. 41 2-422.

Shrobe, Howard E. (1978], “Reasoning and Logic for Corruphex Program Understanding”, Ph D thesis,
MIT, August 1978.

Shrobe, I-howard E. [1979 ], “Exp licit Control of Reasoning in the Programmer ’s Apprentice”, To be

presented at the ‘ith Workshop on Automated Deduction , February 1979.

Stalimari , Richard amid Suss im -ian, G.J. [1977], “Forward Reasoning and Dependency-Directed
L3ac ktracking In A Systcrn for Computer-Aided Circuit Analysis ”, Artificial Intelligence Journal,
October 1977.

Sussman, G.J. [1973), “A Computational Model of Skill Acquisition ”, MIT/AI/TR—297 , August 1973;
also appeared as “A Cormiputer Model of Skill Acquisition ”, New York , American Elsiver 1975.

Water s , Richard C. [1976], “A System for Understanding Mathematical FORTRAN Programs ”,
MIT/AIM-3c~3, August 1976.

Water s , Richard C. [1973], “A M~thiod for Automatica l l y Analyzing the Log ica l  St r u c t u r e  o f

Program s”, PhD thes~s, MIT Cambridge MA~, August 1978, (to appear as MIT/A I/TR-492>.

- -



~~T ~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~ 
—---i ;-~~~~~~~~~~~~

-

-

computer ~idcd EL’oIulianory Qc~/ gn 21 Bibliography

Waters , Richard C. [1979], “A Method for Analyzing Loop Programs ”, to appear in IEEE Trans. on
Soft. Eng., in 1979.

Wulf , W.A. [1974], “ALPHARD: Towards a L~.nguage to Support Structured Programmin g ” , Carneg ie
Mellon Univ., April 1974.

__ _ _ _ _ _ _ _
~~~~~~~~ - -~~~~~~~

-
~~~-


